A TEMPERATURE DEPENDENT MORSE-LIKE POTENTIAL FOR AN INEXPENSIVE YET ACCURATE PREDICTION OF THERMAL EXPANSION IN SOLIDS

Main Article Content

Enrico Benassi

Abstract

Energy potential functions are developed within a (semi-)empirical framework, with the main purpose of simplifying the complexity of quantum mechanics based computation, such as ab initio calculations. These functions return a value of energy based on the displacement of particles in space.

Article Details

How to Cite
Enrico Benassi. (2023). A TEMPERATURE DEPENDENT MORSE-LIKE POTENTIAL FOR AN INEXPENSIVE YET ACCURATE PREDICTION OF THERMAL EXPANSION IN SOLIDS. Fergana State University Conference, 01. Retrieved from https://conf.fdu.uz/index.php/conf/article/view/2288
Section
Physic

References

Morse, P. M. “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,” Phys. Rev. B 1929, 34, 57-65.

Girifalco, L. A.; Weizer, V. G. “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev. B 1959, 114, 687-690.

Daw, M. S.; Baskes, M. I. “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B 1984, 29, 6443-6453.

(a) Foiles, S.M.; Daw, M. S. “Calculation of the Thermal Expansion of Metals Using the Embedded Atom Method,” Phys. Rev. B 1988, 38, 12643-12644. (b) Jeng, Y. R.; Tan, C. M. “Theoretical Study of Dislocation Emission Around a Nanoindentation Using a Static Atomistic Model,” Phys. Rev. B 2004, 69, 104109:1-6. (c) Chiang, K. N.; Chou, C. Y.; Wu, C. J.; Yuan, C. A. “Prediction of the Bulk Elastic Constant of Metals Using Atomic-Level Single-Lattice Analytical Method,” Appl. Phys. Lett. 2006, 88, 171904:1-3. (d) Park, J. Y.; Cho, Y. S.; Kim, S. Y.; Jun, S.; Im, S. “A Quasi-Continuum Method for Deformations of Carbon Nanotubes,” CMES 2006, 11(2), 61-72. (e) Theodosiou, T. C.; Saravanos, D. A. “Molecular Mechanics Based Finite Element for Carbon Nanotube Modeling,” CMES 2007, 19(2), 121-134. (f) Marques, E. C.; Sandrom, D. R.; Lytle, F. W.; Greegor, R. B. “Determination of thermal amplitude of surface atoms in a supported Pt catalyst by EXAFS spectroscopy,” J. Chem. Phys. 1982, 77, 1027-1034.

(a) Stern, E. A.; Līvņš, P.; Zhang, Z. “Thermal Vibration and Melting from a Local Perspective,” Phys. Rev. B 1991, 43, 8850-8860. (b) Miyanaga, T.; Fujikawa, T. “Quantum Statistical Approach to Debye-Waller Factor in EXAFS, EELS and ARXPS. II. Application to One-Dimensional Models,” J. Phys. Soc. Jpn. 1994, 63, 1036-1052; (c) Miyanaga, T.; Fujikawa, T. “Quantum Statistical Approach to Debye-Waller Factor in EXAFS, EELS and ARXPS. III. Applicability of Debye and Einstein Approximation,” J. Phys. Soc. Jpn. 1994, 63, 3683-3690. (d) Yokoyama, T.; Kobayashi, K.; Ohta, T. “Anharmonic interatomic potentials of diatomic and linear triatomic molecules studied by extended x-ray-absorption fine structure,” Phys. Rev. B 1996, 53, 6111-6122. (e) Hung, N. V.; Frahm, R. “Temperature and shell size dependence of anharmonicity in EXAFS,” Physica B 1995, 208-209, 97-99. (f) Hung, N. V.; Frahm, R.; Kamitsubo, H. “Anharmonic Contributions to High-Temperature EXAFS Spectra: Theory and Comparison with Experiment,” J. Phys. Soc. Jpn. 1996, 65, 3571-3575. (g) Hung, N. V. “Anharmonic Corrections in Calculated High-Temperature EXAFS Spectra,” J. de Physique IV France 1997, 7, C2 279-280. (h) Hung, N. V.; Rehr, J. J. “Anharmonic correlated Einstein-model Debye-Waller factors,” Phys. Rev. B 1997, 56, 43-46. (i) Pirog, I. V.; Nedosekina, I. I.; Zarubin, I. A.; Shuvaev, A. T. “Anharmonic pair potential study in face-centred-cubic structure metals,” J. Phys.: Condens. Mat. 2002, 14, 1825-1832. (j) Hung, N. V.; Duc, N. B.; Frahm, R. “A New Anharmonic Factor and EXAFS Including Anharmonic Contributions,” J. Phys. Soc. Jpn. 2003, 72, 1254-1259. (k) Hung, N. V.; Trung, N. B.; Kirchner, B. “Anharmonic correlated Debye model Debye-Waller factors,” Physica B 2010, 405, 2519-2525. (l) Hung, N. V.; Thang, C. S.; Toan, N. C.; Hieu, H. K. “Temperature dependence of Debye-Waller factors of semiconductors,” Vacuum 2014, 101, 63-66. (m) Hung, N. V. “Pressure-Dependent Anharmonic Correlated Einstein Model Extended X-ray Absorption Fine Structure Debye-Waller Factors,” J. Phys. Soc. Jpn. 2014, 83, 024802:1-6. (n) Hung, N. V.; Tien, T. S.; Duc, N. B.; Vuong, D. Q. “High-Order Expanded XAFS Debye-Waller Factors of HCP Crystals Based on Classical Anharmonic Correlated Einstein Model,” Mod. Phys. Lett. B 2014, 28, 1450174:1-10. (o) Hung, N. V.; Hue1, T. T.; Duc, N. B. “Calculation of Morse Potential Parameters of bcc Crystals and Application to Anharmonic Interatomic Effective Potential, Local Force Constant,” VNU J. Sci.: Math. Phys. 2015, 31, 23-30.