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THE POINCARE METHOD IN TEACHING THE THEORY OF 

NONLINEAR VIBRATIONS 
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Annotations. In the realm of continuum mechanics, Poincaré's theory provides 

a framework for understanding the nonlinear propagation of waves in diverse media, 

such as nonlinear acoustic waves, solitary waves (solitons), and shock waves. By 

characterizing the stability, bifurcations, and interactions of nonlinear waves, 

researchers can elucidate the underlying mechanisms governing wave phenomena 
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and predict complex wave behavior in heterogeneous materials. Poincaré's theory 

finds application in the analysis of fluid-structure interaction (FSI) problems, where 

the dynamic coupling between fluid flow and structural deformation leads to 

nonlinear oscillatory behavior. By considering the mutual influence of fluid forces 

and structural response, Poincaré's methods enable the prediction of resonant 

phenomena, vortex-induced vibrations, and instability mechanisms in FSI systems, 

with implications for engineering design and optimization. 

Keywords: Poincaré method, nonlinear oscillations, dynamical systems, Chaos 

theory, nonlinear dynamics, mathematical physics, differential equations, educational 

technology 

Introduction: We proved that the Poincaré's nonlinear oscillation theory can 

be extended to the continuum mechanics and suggested a method of direct 

perturbation of patial differential equation. and weighted integration to calculate the 

resonant and nonresonant periodic solutions of the continuum system. In this paper 

by using the above method we calculate some examples. These examples show that 

our method is effective in application.  

In recent years many authors used the perturbation method of partial 

differential equation to solve the vibration problem of continuum mechanics. In [2] 

Keller and Ting discussed the wave and vibration problem for the nonlinear medium 

with infinitive large dimension, and they called their method improved perturbation 

one. As indicated in [3]. "The main thought of Keller and Tings method is as follows: 

Perturb the parameter, multiply the perturbed nonhomogenous equation by weight 

function and integrate it (usually choose the solution of corresponding homogeneous 

equation as weight function), then get the solvable conditions by which we can define 

the deformed parameter."  

But the method in our paper is quite different from that given by Keller and 

Ting. Our method is based upon the Poincaré's theory and is mainly used to calculate 

the resonant and nonresonant periodic solution of continuum medium. The principal 

thought of our method is: In resonant case in order to avoid the small denominator 
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term to appear in the periodic solution of linear derivative equation, we introduce a 

parameter resolution method, by which we can transform the partial differential 

equation for forced vibration into such a form that the terms standing at the right side 

can be reduced to small quantity and then be merged into the equation of higher 

order. After that by using the condition of periodicity and weighted integration, we 

can determine the constants within the derivative periodic solution.  

This method has some characteristics.  

(1) The result obtained is complete. Formerly the periodic solution of nonlinear 

vibration for beams, thin plates and shells are calculated as follows:Substitute the 

space function satisfying 

boundary conditions into the partial differential equation of continuum system, 

use the approximate method (such as Galerkin method) to reduce the partial 

differential equation to nonlinear ordinary differential equation, then find out the 

solution by means of small parameter method, average method or multiple scale 

method. Therefore the results obtained depend upon the choice of space function and 

thus the understanding of nonlinear oscillation of contnuum system is restricted. But 

our method does not have the above shortage. Our method is based upou the 

Poincaré's theory. After the partial differential equation being directly perturbed, the 

solution of all the perturbed equations can be expanded into generalized Fourier 

series in eigenfunctions of derivative system. Under certain conditions we can 

determine the proportion of each eigenfunction and decide which should be retained 

and which should be given up in the solution, therefore the result obtained by our 

method is complete. In order to differentiate our method from the others we call it 

direct perturbation method of partial differential equation.  

(2) Because the solution of all the perturbed equations can be expanded 

intogeneralized Fourier serier in eigenfunctions of derivative system, we can given a 

unified formula for calculating the periodic solution of such problems which have 

same geometric shape and constitutional property but different boundary conditions 

and load distribution. Hence it is convenient in application. 
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 (3) The operations included in calculating the resonant and nonresonant 

periodic solution are only the integration of time function and avoid solving nonlinear 

differential equation. Therfore in solving process we only need to concentrate our 

attention on discussion of boundary value problem. Combining our method with 

proper approximate method of boundary value problem we can effectively solve 

problems which have very complex boundary conditions.  

II. The Forced Vibration of Elastic Beam with Fixed Span  

The differential equations of elastic beam with fixed span and under the action 

of transverse load are 

 

 

 

 

 

where  is deflection of beam,  is transverse displacement,  is inner axial force, 

u is mass per longitudinal length,  is area of transverse section,  is elastic modulus, 

 is damping coefficient.  

According to Kirchhoff's assumption, the longitudinal inertia force in (2) can 

be neglected. Introduce the following dimensionless quantities: 
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in which 1 is span of beam,  is height of beam, then (1), (2) and (3) can be reduced 

to 

 

 

 

 

Suppose  is a periodic function in with a period  i.e. 

 

 

 

and the boundary conditions are 

 

 

 

 

 

both ends are fixed as , simply supported as  one fixed and other 

simply supported as 
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Substitute (10), (11), (12) into (4), (5), equate the coefficients of of the same 

order on both sides, then we get 

 

 

 

 

Therefore for thin plate (note , so the smaller , the 

smallera) and small damping (smaller A), asis close to one of lower intrinsic 

frequency of derivative system, there would be . On the other hand, as 

mentioned above, the nonresonant term in (3) is a small quantity and is independent 

upon  and A. Thus under the above conditions in calculating resonant periodic 

solution it is permitted to neglect the nonresonant terms. Conversely, for thick plate, 

large damping and high frequency resonance( ), the resonant term and 

nonresonant term are of the same order, so in calculation of resonant periodic 

solution the nonresonant term are not negligible. If we adopt the current approximate 

method to calculate the above problem, the procedure is 

as follows: Substitute ) sinrax sinray into (5), obtain  

substitute  and  into (4); by using Galerkin method reduce (4) into 

nonlinear ordinary differential equation, from which we get the 1st order approximate 

solution; finally by solvable condition we obtain two equations for determining 

Mand, which are the same as (3) and (4). It is clear the above procedure is more 

complicated than that of ours.  

As  (superharmonic resonance), the equations for determing Mand are as 

follows 
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(6) and (7) have only the zero solution M=0, obviously it is not in agreement 

with the fact. This is owing to the fact that we neglect the nonresonant terms in (8) 

which originally should not. In reality in superharmonic resonance the resonant and 

nonresonant terms are of the same order, their 2nd derivatives are of the same order 

too. Therefore when we neglect the nonresonant terms, as a result the M obtained by 

(6) and (7) would be zero. Thus M=0 does not mean no superharmonic resonance to 

exist, it merely means the amplitude of superharmonic resonance is much smaller and 

is of the same order as the nonresonant term. 

(B) Double mode resonance q=0  

we still study the principal resonance of lower frequency for thin plate with 

small damping. Suppose 

 

in which ser. Substituting (8) into (9) and integrating it, we have 

If we exchange  and , and so 0, and the form of (4) remains unchanged, 

thus we know  Eliminating  we get 

 

If in expressions for and y we put sr, it yields . After that we add 

the Ist equation of (4) to the 3rd, the 2nd to the 4th, and put  

 then again we obtain (3) and (4). 

Since  from (5) and (6) it can be seen under simply supported 

conditions, the amplitude-frequency curve for  (i.e. static load ) would lie 

in the right side of that for  (i.e. static load=0), this means that the static load 

plays a role to raise the frequency of principal resonance. In addition, from (4) and 

(7) we know that the difference of  is .  Thus as , i.e. as 
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the influence of load average (static load) upon the frequency of principal 

resonance should be taken. into consideration. If we denote the frequency raised by 

static load by, then from (2) we get 
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