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Abstract: The problem of the penetration of a magnetic field into a high-temperature
superconductor, which is in the regime of flux creep in an external magnetic field, is considered.
Analytical formulas are obtained for the depth and rate of penetration of a magnetic field into a
superconductor depending on the values of the problem parameter, namely, on the exponent n
characterizing the rate of penetration of vortices into the superconducting half-space.
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Theoretical studies of the patterns of magnetic flux penetration in a various regimes of
superconductors were carried out in classical works [1-3]. The dynamics of magnetic flux penetration
under the assumption that the differential resistance does not depend on the magnetic field was studied
in [2]. In this paper, we consider the nonlinear diffusion problem of the penetration of a magnetic flux
into a superconductor taking into account the nonlinear current-voltage characteristic of
superconductors, which is valid in the region of low eclectic fields and in the regime of flux creep.
An exact numerical solution is obtained, describing the spatial and temporal evolution of the
penetration of the current density, the magnetic and electric fields in the sample. To simulate the
process of evolution of small perturbations of the electromagnetic field in space and time, we use the
system of equations of macroscopic electrodynamics [3, 4].

The distribution of magnetic induction B, electric fieIdE, and transport current in the
superconductor are determined by the following equation

rotB =y, j- rotE%—?. 1)

Using the mathematical formalism developed in [2], we study the influence of differential
resistance p; (B), on the process of penetration of the magnetic flux the viscous flow regime. The

current-voltage characteristic in the regime of viscous flow of vortices can be written in the form
E=p(B) . (2)
Here j=].(B,T). Combining relation (1) with equation (2), we obtain a nonlinear diffusion

equation for the magnetic flux induction B(F, ) in the following form

dB_ 1 5
@ = VIe®ve]: (3)

Obviously, the space-time structure of the solution of the diffusion equation (3) is determined
by the nature of the dependence of the differential resistivity on the magnetic field induction B.
Usually in a real experimental situation differential resistance , () increases with increasing magnetic

field induction

p(B)=%I§=p (4)
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where p, is the differential resistance in the normal state; n is the viscosity coefficient, g __ is the
upper critical field of the superconductor. In the case when the differential resistivity ) is a linear
function of the magnetic field induction B, the exact solution of the diffusion equation (3) can be
easily obtained using known scaling methods [2]. For the complex dependence (g), one can use the
empirical exponential dependence p(B) ~B",where n is a positive constant parameter.

Let’s consider the evolution of the magnetic flux injected in the infinite thin film (the xy plane)
of a type-I1 superconductor (the flux lines are perpendicular to the surface). We assume the problem
to be homogeneous along y, so the local magnetic induction B depends only on the coordinate x and
on time. The current flows along y. An applied magnetic field is absent. For this dimensional
geometry [5], the spatial and temporal evolution of the magnetic field induction is g(r, t) described

by the following nonlinear diffusion equation in a generalized dimensionless form

q
db_df.[dbT"), 5)
dt dg dg
where we have introduced dimensionless parameters b:E, = Mol X, Fl, j:l, B, =11,j,Vt,
Be Be 0 -0 )
and variables; X, = B*f - is the depth of penetration of the magnetic field in the Bean model;
Pole

2
t,=p, J|°3—“2° is the diffusion time; q is a positive constant parameter. The diffusion equation (5) can

e

be integrated analytically, taking into account the appropriate initial and boundary conditions at the
center of the sample and at its edges. Let us consider the case when the magnetic field applied to the
sample increases with time according to a power law with exponent o> 0
b(0, t)=b, (1+t)". (6)
b(x,,t)=0, (7)
The boundary condition (5) is equivalent to a linear increase in the magnetic field with time,
which corresponds to the real experimental situation. It is easy to see that the case a=0 describes a
constant applied magnetic field on the surface of the sample, while the case a=1 corresponds to a
linearly increasing applied field, respectively. Here we consider the different cases, namely n =0, 1,
2and q =0, 1. All examples are computed with N = 100 polynomials for the x and y-dependences,
and Nt = 1000 time steps. Note that larger values of these parameters have only an effect on the
solution below plotting accuracy, i.e., the resulting figures would be indistinguishable from the ones
shown. The spatial and temporal profiles of the magnetic flux are shown in Figures 1-3. We first
consider the case n =0 and g = 1 in Fig. 1, on the left the initial condition, on the right the solution for
t = 0.5. The solution is clearly unstable in the sense that the initial perturbations grow. In addition the
simulations were performed for the coefficient a=1, final time t=10, time discretization M = 91, and
space discretization N =82.
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Fig.1. The effective magnetic flux penetration of the at n=0 and q=1 for t=0.5
and t=1.

Next, we consider the case n =1 and g = 1 in Fig. 3, on the left the initial condition, on the right
the solution for t = 0.5. Schematically, the evolution of the process of penetration of the magnetic

field in the regime of viscous flow of vortices with a power-law dependence b(X,t) on the exponent n
is shown in Figure 2.

Fig.2. The effective magnetic flux penetration of the at n=1 and g=1 for t=1
and t=%

Next we consider the case n =2 and q = 1 in Fig. 3, on the left the initial condition, on the right
the solution for t = 5. Schematically, the evolution of the process of penetration of the magnetic field

in the regime of viscous flow of vortices with a power-law dependence b(X,t) on the exponent n is
shown in Figure 3.

Fig.3. The effective magnetic flux penetration of the at n=2 and g=1 for t=5
and t=10.
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The obtained solution (7) describes the effective penetration of the magnetic flux into the
sample, and the magnetic induction is localized in the region between the surface x = 0 and the flux

front x . This solution is positive in the plane Xi > X’ and equals zero outside it. The position of
the flow front X, = X(t) as a function of time can be described by the relation

1
X, =2Zpt" . (8)

0.5

O 0.2 0.4 06 08 1 O 0.2 0.4 06 08 1

Fig.4. The effective magnetic flux penetration forn=3, 7, 11.

The speed of the magnetic flux front decreases rapidly as the magnetic flux propagates (Fig. 4).
_(29+n-1)

dx
Vo (t) ~ d—t” ~t 2 (9)

The spatial and temporal profiles of magnetic flux penetration into the sample depend on a set
of three independent parameters, n, q, and a. It is of interest to consider the non-linear diffusion
equation for magnetic induction at different values of the exponents n, g and a. For a given set of
parameters n , g and aithe form of the scaling function f (z) can be obtained by solving the nonlinear
diffusion equation (13) analytically by the self-similar method. Thus, in order to obtain expressions
for the spatiotemporal evolution of magnetic induction for various values of the exponents n, g, we
will ainvestigate the solution of the diffusion equation. In addition, we analyze the influence of
various values of the indicators on the shape of the magnetic flux front in the sample. By varying the
parameters of the equation, we can observe different forms of the magnetic flux front in the sample.
Note that a similar approach was used in [7] in the framework of nonlinear flow diffusion for the
transverse geometry of the sample. As can be shown, different values of the exponents n and q
generate different spatiotemporal magnetic flux fronts in a superconductor [11].

CONCLUSION
In summary, we have considered problem of nonlinear diffusion of the magnetic flux injected
in an infinite thin type-I1 superconductor. We have solved it numerically in the most interesting case
of flux flow resistivity proportional to the power-law dependence of local magnetic induction B. The
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obtained flux space-time distributions are of the self-similar form with rather striking scaling
functions.

REFERENCES

D.G., Aranson, J.L.Vazquez, Phys. Rev. Lett. 72, 823 (1994).

V.V. Bryksin, S.N. Dorogovstev. Physica C 215, 345 (1993).

J. Gilchrist J., C.J. Van der Beek, Physica C. 27, 231 ( 1994).

J.Gilchrist. Physica C. 30, 291 (1997).

P.W. Anderson, YB Kim YB Rev. Mod. Phys . 36 , 3456 (1964).

V.M. Vinokur, M.V. Feigel’man and V.B. Geshkenbein, "Exact Solution for Flux Creep
with Logarlthmlc U(j) Dependence: Self-Organized Critical State in High-Tc Superconductors,”
Phys. Rev. Lett., vol. 67, p. 915, 1991.

7. H.G. Schnack and R. Griessen, ”Comment” to ref. [1], Phys. Rev. Lett. vol. 68, p. 2706,
1992.

8. Z.Kozio I, P.F. de Ch™atel, J.J.M. Franse, Z. Tarnawski and A.A. Menovsky, ”Evidence
for Nonlinear Flux Diffusion from Magnetization Relaxation in Bi2Sr2CaCu208 Single Crystals,”
Physica, vol. C212, p. 133, 1993.

9. L. Boltzmann, ”Zur Integration der Diffusionsgleichung bei variabeln Diffusions-
coefficienten,” Ann. Physik, Leipzig, vol. 53, p. 959, 1894.

10. ”Handbook ofMathematical Functions with Formulas, Graphs, and Mathematical Tables,”
Ed. by M. Abramowitz and I.A. Stegun, 1964.

11. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, (Oxford: Clarendon), p.82,
1959.

ocoukrwhE

POJIb ®U3UKHU B MIPENIOJABAHUN MATEPUAJIOBEJIEHUA TKAHEM
Xampxukapumona I'ynacan TagkuanuesHa, Ycaposa lloiipaxan
DepraHcKkuil rocyapCcTBeHHbI YHUBEPCUTET

Aunoraumnsi: B TaHHOM CTaThe NMPUBEIECHBI CBEJICHUS O CBOMCTBAX M XapaKTEPUCTUKAX TKaHEH,
CBEJIeHUs 0 (PU3UKO-MEXaHNYECKHUX CBOIMCTBaxX TKaHel HOBOro cocrasa. [lomuepkHyTa posb pu3nKu
B [IPENIOIABAaHUU HAYKU O TKAHEBBIX MaTepuajax.

Kuouesble cioBa: MOJI€Ib, aHANIN3, KPETl, CATUH, COUETaHNe, MaTepHuall, IPOYHOCTb, PypHUTYpa,
¢u3nyeckue CBOUCTBA,IPOYHOCTD.

OT)I@J'IKa TKAHU — D3TO COYCTAHHC (1)I/ISI/IKO-XI/IMI/I‘—IGCKI/IX U MCXAaHHUYCCKHX HpOHeCCOB
MPEBPAIIECHUSI ChIPOM TKaHW B TOTOBYIO TKaHb. L[enbpl0 OTIEIKH TKaHEH SIBISETCS YIYUIIEHHE WX
BHCIITHETO BHJ1a U Ka4yeCTBa. OT)ICJ'IKa y‘—II/ITI)IBaeT XI/IMI/I‘IeCKI/Iﬁ COCTaB BOJIOKOH, BXOIITUX B COCTaB
TKaHH.

Kinumarnueckue ycnoBUsS HAIIEr0 pErHMOHa I[OKA3bIBAlOT, 4YTO CYIIECTBYET BBICOKAS
MOTPEOHOCTh B TEIUIONW onexae. JIIou UCIONB3YIOT Pa3HYI OJIeXkKAY, YTOOBI 3aIUTHTH ce0s OT
ectecTBeHHOro auckomdopTa. K Hambosee pacmpocTpaHEHHON YTEIIISIONIEH OJeXIe OTHOCSTCS
I1aJbTO, KypTKH U MaJIbTO. Cpe)m HUX IIAJIBTO BBIACIAKOTCA TEM, YTO UX MOKHO HOCHUTH B paBHOM
BO3pacTe U B pa3HbIX yciaoBUsIX. OCHOBHBIC JETAJIN MMAJTTO BHIMOJHEHBI U3 TKAHEH Pa3HBIX CBOMCTB.
Jns 3uMHEW BepXHEH OJEXKIbl BaXKHbI CBOMCTBA COXPAHEHUsS TEIUIA, BOJIOHENPOHHUIIAEMOCTH,
BO3/IyXOHETIPOHUIIAEMOCTH H THIICTOTIIOIICHHS.
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