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Abstract: In the present article we have studied the physical properties of a Helmholtz coil that 

can produce a second-order uniformity field for use in magnetic resonance imaging (MRI) 

applications. A Helmholtz coil is a device used to create a region of nearly uniform magnetic field. It 

consists of two identical magnetic coils arranged symmetrically along a common axis, one on each 

side of the experimental site, separated by a distance equal to the radius of the round coil and the half-

length of the side of the square coil. Each coil carries an equal electric current flowing in the same 

direction. The main goal of this article is to calculate the magnetic field created by Helmholtz coils 

at any point in space. Mathematical equations are simulated using the MATLAB simulation tool to 

demonstrate the axial magnetic field generated by one and two loops. The importance of testing 

electronic devices under the influence of a constant magnetic field is substantiated. The magnetic 

field created by Helmholtz coils of finite rectangular cross-section is investigated. An analytical 

expression is derived for the magnetic field on the axis of a solenoid of finite thickness and the 

magnetic field on the axis of Helmholtz coils of rectangular cross-section. In the particular case of 

using Helmholtz coils with a square cross-section, the condition for the second derivative of the 

magnetic field to vanish along the symmetry axis of the system at its center is numerically analyzed. 

This makes it possible to determine the distance between square coils at which the field in the center 

of the system is most uniform. It is shown that taking into account the finiteness of the cross-section 
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leads to a change in the optimal distance between the coils. A table of optimal distances for square 

Helmholtz coils of different thicknesses has been compiled. 

Keywords: electronic devices, magnetic field, Helmholtz coil effect, rectangular cross-section, 

round Helmholtz coil; radio frequency coils; modeling; modeling; MATLAB; electromagnetic field 

measurement; impedance measurements; MRI 

Introduction. A Helmholtz coil is a device used to create an area of nearly uniform magnetic 

field [1-2]. It consists of two identical round magnetic coils located symmetrically, one on each side 

of the experimental site along a common axis, at a distance d equal to the radius R of the coil. The 

currents in the coils are equal and flow in the same direction. There are several variations in coil 

topology, including the use of rectangular coils and different numbers of coils. However, the standard 

model is the two-coil Helmholtz pair, whose coils are round in shape and have flat sides. In such a 

device, an electric current is passed through coils to create a fairly uniform magnetic field. Helmholtz 

coils are used for a variety of purposes. They were used in an argon tube experiment to measure the 

charge to mass ratio of electrons [3]. They are often used to measure the strength and fields of 

permanent magnets [4-5]. To do this, a pair of coils is connected to a flux meter, a device that contains 

the sense coils and electronics that evaluate the change in voltage across the sense coils to calculate 

the total magnetic flux. In some applications, a Helmholtz coil is used to neutralize the Earth's 

magnetic field, creating an area with magnetic field strength close to zero. This can be used to see 

how electric charges and magnetic fields act when they are not affected by the gravitational pull of 

the Earth or other celestial bodies [6-7]. This work focuses on Helmholtz-type radiofrequency coils 

that can be used for magnetic resonance imaging applications. In particular, the design, modeling of 

a circular Helmholtz coil for magnetic resonance imaging, in addition to ensuring good uniformity of 

the radio frequency electromagnetic field, provides a certain ease of implementation. This work 

examines the magnetic field of Helmholtz coils - two coaxially located identical radial coils, the 

distance between the centers of which is equal to their average radius. In the center of the system 

there is a zone of uniform magnetic field. They are used to obtain a constant, alternating or pulsed 

magnetic field with a homogeneity zone, which is usually used in experiments, as well as for 

calibrating magnetic induction sensors, magnetizing and demagnetizing permanent magnets, 

demagnetizing steel workpieces, parts and tools. The main purpose of this article is to calculate the 

magnetic field produced by coils at any point in space, and to show and compare the uniform magnetic 

field produced by a circular Helmholtz coil. Mathematical equations are simulated using the 

MATLAB simulation tool to demonstrate the axial magnetic field generated by one and two loops. 

The Helmholtz coil. Consider a circular Helmholtz coil of radius R , separated by a distance l, 

as shown in Figure 1. Each coil carries a constant current I in the same direction. Let the magnetic 

field Bi be calculated on an axis at a distance z from the center of one coil. 

The magnetic fields produced by a circular wire loop can be obtained according to the following 

procedure. Electromagnetic (EM) fields generated by a circular wire loop carrying a current I will 

satisfy Maxwell's equations. For a wire loop (or coil) excited by a low-frequency current, almost all 

the energy is stored in the magnetic field. This energy is determined from the concepts and rules of 

circuit theory. 
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Circuit theory can be thought of as a description of a special class of solutions to Maxwell's 

equations that result from using the first term of a power series solution for fields. Fields calculated 

using this approximation are called quasi-static. In the quasi-static approximation, electromagnetic 

phenomena such as radiation are neglected. 

Geometry of the problem. A general rule of thumb for circuit elements driven by sinusoidal 

voltage or current is that the quasi-static approximation will be extremely good when the physical 

size of the element is small enough compared to the source excitation wavelength. This limitation 

will be met if the phase of the voltage (current) is approximately the same over the spatial extent of 

the element. For a circular loop, this condition requires that the current be nearly constant around the 

circumference of the loop. The current can change over time, but at each moment of time the current 

in each part of the circuit must have the same value. Therefore, the quasi-static approximation will 

be very good as long as 2 a  (or 

in terms of frequency instead of 

wavelength, c /10a , where a is 

the radius of the loop and c is the 

speed of light in free space. One can 

find the electromagnetic fields 

produced by a loop in this order of 

approximation by determining the 

current in the loop using circuit 

theory and using this uniform current 

as a source of vector potential from 

which the fields can be easily 

derived. This is the approach used 

below.  

In Fig. Figure 2 shows the coordinates and variables for a loop of radius a located in the xy 

plane . The circuit is assumed to have a total current I. 

Basics of electromagnetism. Since we will be working extensively with electromagnetism, it 

is important that we establish a good foundation for the work. This benchmark will be described by 

the famous Maxwell equations formulated in 1861 [7], which are given below:
    

B
E ,

t


 = −

        
( 1) 

Fig.1. Helmholtz coil arrangement with elliptic loops. 

l
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R

Fig.2. Elliptic coil arrangement to compute the off-axis magnetic field. 
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0 0

E
B J ,

t

 
 =  +  

 
      ( 2) 

0

E ,


 =
       

 (3) 

B 0. =
       

( 4) 

where E and B represent the electric and magnetic fields, respectively; electric 0
 
and 0 magnetic 

permeability in vacuum, respectively; and J current density. Although Maxwell's equations do 

describe our structure, they can be difficult to work with. For our work it will be useful to use Biot-

Savart's law, which is given here below: 

0

3

C

Id l (r r ')
B(r) .

4 | r r ' |

  −
=

 −

                                                                    

(5) 

where C is the path along the direction of the current I , r and r 'are vectors representing the distance 

between the origin and the place where the field is calculated, and the current element, respectively. 

Looking at Maxwell's second equation (2) and remembering the following property of divergence: 

( A) 0.  =

                                                                         

(6) 

let us introduce the vector magnetic potential A : 

B A,= 

                                                                              

(7) 

which may seem tedious, but as we will see, it will be useful for multipolar extensions. Using 

equations (3) and (4), we obtain the expression for the magnetic vector potential: 

0I dr '
A(r) .

4 | r r ' |


=

 −

                                                                    

(8) 

where A is the vector potential, and I is the current in the circuit. From the direction of the current A 

has only a  and by symmetry A does not depend on the variable  . When setting up the integration, 

we use arbitrary values =0 to simplify the results. Using the symbols shown in Figure 2 , we may 

get the following relations 

dl ( asin ',a cos ',0)d ',= −     

r (r sin ,0, r cos ),=    

r (a cos ', asin ',0),=    

2 2| r r ' | r a 2r a sin ,cos '.− = + −    

                                                 

(9) 

The distribution of magnetic field. Substituting these variables into the integral, we notice 

that the integral with participation sin ' vanishes (it is odd), as it should be, since A
only the 

component must survive, and the integral with cos ' ' (even) allows us to reduce the range of 

integration by half. It leads to 

0
φ

2 2
0

Ia cos d
A .

2 R 2 R sin cos


  

=
  + −   



     

(10) 

 
2

0
φ

2 2 2
0

IR( sin e cos e )d
A ( ,0,z)

4 R z 2 cos



  −  +  
 =

  + + −  


     

(11) 
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It is more convenient to express this integral in terms of cylindrical coordinates, using

2 2 2r z=  +
2 2

sin
z


 =

 +
 

0
φ

2 2 2
0

IA cos d
A ( ,z) .

2 R z 2 R cos


  

 =
  + + −  



     

(12) 

This integral does not have a closed form; however, there is a conversion that results in table 

functions. Change the variable to obtain the upper limit of the integral / 2 using ' 2 =  +  . The 

integral becomes 
/ 2 2

0
φ

2 2 2
0

IA (2sin 1)d
A ( ,z) .

2 ( R) z 4 R sin


  − 

 =
  + + −  



                                          

(13) 

If we define 2

2 2

4ar
k ,

(a r) z
=

+ +
 then the integral transforms into 

2

0
φ

I a k
A ( , )= 1 K E .

k 2

  
  − −  

          

(14) 

An accurate (numerical) calculation of the off - axis magnetic field of a circular loop can be 

started from the vector potential in spherical coordinates given in (14). An alternative is to turn to 

elliptic integrals: introducing cylindrical coordinates z sin , r cos ,=   =   and the parameter 

2

2 2

4ar
k (z, r) ,

(a r) z
=

+ +
from (14), after simple transformations we obtain  

/ 2

2 2 1/ 2

0

/ 2

2 2 1/ 2

0

K((k) (1 k sin ) d ,

E(k) (1 k sin ) d



−



= −  

= −  




     

(15) 

K is a complete elliptic integral of the first kind, E and is a complete elliptic integral of the 

second kind. Both functions are tabular. Magnetic fields are calculated from the vector potential by 

B A,=  providing two components: 

z

A 1
B ( ,z) , B ( , z) ( A ).

z z



 

 
 = −  = 

  

                                              

(16) 

The final expression for the magnetic field components takes the form 

( ) ( )

2 2 2

0

2 22 2

I z a z
B ( ,z)= E K .

2 a za z


  +  +
 − 

 − +  +  +  
      

(17) 

( ) ( )

2 2 2

0
z 2 22 2

I z a z
B ( ,z)= E K .

2 a za z

  − −
 − 

 − +  +  +  
      

(18) 

For small values of k (i.e. r a or r a ) of the expansion 

2 2
4 4k 9 k 9

K 1 k ... , E 1 k ... ,
2 2 64 2 2 64

    
= + + + = − − +   

   
                            

(19) 
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For a single loop in the xy plane , we can find the magnetic field components at any location 

and z by first determining k from the definition above and then substituting into the above formulas. 

We can check the accuracy of these expressions for the simple case of magnetic field components 

along the loop axis. On the axis 0 = , from which follows k = 0 and, therefore, K(0) E(0) / 2.= =  the 

expression for B
becomes undefined, but applying L'Hopital's rule gives B 0 = . Expression for zB

becomes  

0
z

2 2 3

0.5 I
B

(a z )


=

+
     

(20) 

as expected. To calculate the magnetic fields from the Helmholtz coil, fields calculated for two 

circuits having the same axis, located in planes in z d= −  and L d= . The separation distance 2 d is 

related to the loop radius by the relation d a / 2= . The expression for the total magnetic field, written 

in terms of the above derivation, is simply the sum of the individual fields from each loop . 

Numerical results. In Fig. Figure 3 shows the axial 
zB (left) and radial B

(right) field 

components along the vertical axis of the hole. We see that the BZ shows three humps due to the 

three-turn configuration. The field is within 10% of the central value between Z = 0.8 and 3.1 m. The 

radial component B
, shown below, rolls off below 1 and above 3 m. Here the 10% margin is achieved 

at approximately Z = 0.8 and 3 ,1 m. The decrease in the radial field is accompanied by an increase 

in the axial field, which increases the “undesirable” component of the BZ field below 1 and above 3 

m. We cannot do anything about this decrease except increase the radius of the turns or add additional 

turns. The decision on how far to lower the resonator into the “poor field” region depends on the 

gradient and the dependence of the damping limits on the magnetic field.  

 
Fig . 3. A two- dimensional comparison of the measured and calculated magnetic field as a 

function of z at the center line ( 0 = ). 

Figure 4 is another representation of the same data, presented as contour plots. Contour plots 

show that the field is uniform at 1.3 x 10 -6 T for most of the inner region. 
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Fig . 4. A two- dimensional comparison of the measured and calculated magnetic field as a 

function of z at the center line ( 0 = ). 

In Fig . Figure 5 shows a three-dimensional comparison of the measured and calculated z -

components of the magnetic field depending on   and z for .for typical parameter values

7

0LN 50, 4 e , I 0.019,=  =  =  

a 0.155, d 1.19 / 2.= =   You can see that they compare very well in terms of wave shape and 

magnitude. 

 
 

 
CONCLUSION 

Fig.5. A 3D graph of the magnetic field B(ρ,z) at different values of parameter a 

 

Fig.5. A 3D graph of the magnetic field B(ρ,z) at different values of parameter a 
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The present work examines and demonstrates the performance of standard square and round 

Helmholtz coils that can be used for magnetic resonance imaging. The coil assembly consists of two 

coaxial loops separated by a distance equal to their radius for a round coil and half the side length for 

a square coil, and carrying the same current (co-current mode) in a symmetrical arrangement. The 

developed Helmholtz-type coils create a uniform second-order field. A comparative study of 

MATLAB simulation along with experimental implementation was conducted to test the magnetic 

field uniformity of round and square Helmholtz coils. The magnetic field value for which the coil 

was designed was successfully achieved. The Helmholtz coil is an excellent source of uniform 

magnetic field and it was built within a very economical budget. It was noticed that if the radius of 

the round coil is equal to the side of the square, and the distance between the coils is less than 50% 

of the radius of the round coil and less than 55.4% of the side of the square coil, then the sensitivity 

of the magnetic field for a round coil is greater than for a square coil . But a pair of square coils 

exhibits greater magnetic field uniformity than a pair of round coils. It was also observed that the 

distance between the turns should be approximately equal to 50% of the radius for a round coil and 

27.7% of the side length for a square Helmholtz coil. A pair of square Helmholtz coils demonstrated 

greater field uniformity than round Helmholtz coils, which is desirable for MRI applications. It has 

been established that the sensitivity (magnitude) of the magnetic field in a pair of round Helmholtz 

coils is greater than that of square coils. 
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