- Волчецкий, А. Л. Кристаллизация и кристаллография: медико-биологические аспекты / А. Л. Волчецкий, Л. Г. Рувинова, Б. А. Спасенников [и др.]. Архангельск, 1999. 374 с.
- Шатохина С.Н. Морфологическая картина ротовой жидкости: диагностические возможности / С.Н.Шатохина, С.Н.Разумова, В.Н.Шабалин // Стоматология. - 2006. - №4. - С. 14-17.

ДОЛГОВРЕМЕННАЯ РЕЛАКСАЦИЯ ФОТОЭЛЕКТРЕТНОГО СОСТОЯНИЯ ФОТОВОЛЬТАИЧЕСКИХ ПЛЕНОК CdTe:(Ag, Cu, Cd) И Sb₂Se₃:Se Нурматов О.Р., Рахимжонов Ж.С., Толабоев Д.Х., Турсунов И.М., Юлдашев Н.Х. Ферганский политехнический институт, uzferfizika@mail.ru

Аннотация. Приводятся результаты экспериментальных исследований долговременной релаксации фотоэлектретного состояния (ФЭС) в пленках CdTe:(Ag, Cu, Cd) и Sb₂Se₃:Se. Показано, что в активированных пленках ФЭС обусловлено с глубокими примесными уровнями или комплексами, в которых входит примесные атомы и собственные дефекты.

Ключивые слова: тонкие легированные пленки, аномальное фотонапряжение, фотоэлектретное состояние, долговременная релаксация.

Исследование долговременной релаксации аномального фотонапряжения ($A\Phi H$) при темновой деполяризации фотоэлектретов от условий поляризации является наиболее существенным при анализе процессов, лежащих на основе образования фотоэлектретного состояния ($\Phi \partial C$) без внешнего поля в полупроводниковых пленках [1-3]. В данной работе рассмотрены релаксационные процессы в пленках CdTe:(Ag, Cu, Cd) и Sb₂Se₃:Se, для чего снимались деполяризационные кривые аномального и фотоэлектретного напряжений в темноте в режиме холостого хода после фотополяризации.

Рис.1. Кривые релаксации $V_{A\Phi H}$ для $A\Phi H$ пленок CdTe : Ag (1, 2, 3), CdTe(4) (*a*) и кривые деполяризации «чистого» $V_{\Phi \ni H}$ для двух $A\Phi H$ пленок CdTe : Ag, полученных одновременно (*б*). T = 293 K.

На рис. 1,*а* приведены в полулографимических координатах зависимости $V_{A\phi H}$ от времени релаксации для пленок CdTe: Ag (1, 2, 3) и CdTe (4). Кривые 1 и 2 соответствуют релаксацию $V_{A\phi H}$ в пленках CdTe: Ag в воздухе и в вакууме 10^{-2} *мм.рт.ст...*, а кривая 3 представляет собою релаксацию фотонапряжения этой же пленки после неполной её фотополяризации (время поляризация 2-3c). Кривая 4 характеризует ход релаксации $V_{A\phi H}$ контрольного нелегированного образца, полученного одновременно с активированными

пленками. Из кривых релаксации видно, что время спада $A\Phi H$ легированной пленки значительно больше времени релаксации контрольной пленки теллурида кадмия. Время релаксации $A\Phi H$ в контрольной пленке практически совпадало с начальным временем релаксации нелегированных пленок и определялось временем максвелловской релаксации. Время релаксации одной и той же $A\Phi H$ пленки CdTe: Ag на воздухе и в вакууме различаются на десятки мин. Это объясняется тем, что в процессе исследования ΦC пленок, находящихся на воздухе или в атмосфере других газов, на значение фотополяризации влияют адсорбированные на поверхность образца ионы и электроны.

Для отделения «чистого» фотоэлектретного напряжения ($\Phi \Theta H$) от $A\Phi H$ контакты фотополяризованного образца короткозамыкались на 2-3c. Когда пленка вновь подключалась к электрометру, то через ~10c. устанавливалось стационарное $\Phi \Theta H$.

На рис. 1,6 представлены кривые деполяризации «чистого» фотоэлектретного напряжения в полулогарифмическом масштабе для двух активированных $A\Phi H$ пленок CdTe: Ag, полученных в одинаковых технологических условиях. Из кривых деполяризации $V_{\Phi \Im H}$ видно, что у каждой из них проявляются два прямолинейных участка, для которых деполяризация фотонапряжения описывается зависимостью вида

$$V_{\phi \ni H} = V_{\phi \ni H}^{CT} \exp(-\frac{t}{\tau^*}) \qquad , \qquad (1)$$

где $V_{\phi \supset H}^{CT}$ - начальное значение стационарного $\Phi \supset H$, τ^* -характеристическое время жизни неосновных носителей заряда на глубоких примесных уровнях, значение которого различно для участка кривых с различными наклонами. Начальный участок релаксационных кривых соответствует сравнительно быстрому спаду $V_{\phi \supset H}$ ($\tau = \tau_{_{Hav}}$) и видимо связан с максвелловским временем релаксации, в тоже время также может проявляться наличие в пленках неглубоких уровней, а второй участок с долговременной релаксацией фотонапряжения ($\tau = \tau^*$) и обусловлен более глубоким уровнем прилипания.

На рис. 2 приведены кривые релаксации $V_{\phi \ni H}$ для пленок CdTe:Cd(1), CdTe:Cu (2), $Sb_2Se_3:Se$ (3) после полной фотополяризации с $L = 8 \cdot 10^{-2} BT/cm^2$. Участок сравнительно быстрого спада $V_{\phi \ni H}$ во всех исследованных образцах имеет качественно одинаковый характер и мало зависит от экспозиции (сравните рис. 1, δ , и 2). Второй участок кривых, соответствующий долговременному

Рис. 2. Кривые деполяризации $V_{\phi \ni H}$ для $A\Phi H$ пленок CdTe:Cd (кривая 1), CdTe:Cu (2) и $Sb_2Se_3:Se$ (3) при T = 293~K.

спаду $V_{\phi \ni H}$, сильно зависит от экспозиции. Насыщение $V_{\phi \ni H}$ наступает, например, в случае $A\Phi H$ пленки CdTe: Ag при $_{Z} = 20 \frac{Bm \cdot c}{cM^2}$. Значения $\tau_{_{Hav}}$ и τ^* определились по углам наклона кривых темновой деполяриации $V_{\phi \ni H}$, т.е. как

$$\tau = t \bigg/ \ell n \frac{V_{\phi \ni H}^{CT}}{V_{\phi \ni H}(t)}$$

На рис. 3 приведены зависимости τ_{uau} и τ' от времени фото-поляризации, полученные в результате возбуждения светом интенсивности $L = 8 \cdot 10^{-2} B_{\rm T}/c_{\rm M}^2$ исследуемых $A \Phi H$ пленок при комнатной температуре. Как видно из рисунка, τ^* для пленок CdTe:Cd, CdTe:Ag и $Sb_2Se_3:Se$ доходило соответственно до значений 40-45, 30-35 и 20-25 мин, тогда как τ_{uau} было несколько минут. Отметим, что с понижением температуры значение τ^* резко возрастало и измерялось часами, а значение $\tau_{_{Hay.}}$ мало завесело от температуры. Рост измеряемой величины τ^* , по-видимому, связан с изменением времени релаксации уровни чувствительности на аппаратуры, а не временем релаксации на

Рис.3. Зависимости $au_{hay.}$ и (1-4) и au^* от времени фотополяризации для плёнок *CdTe* : *Cd* (1, 1'), *CdTe* : *Ag* (2, 2'), *Sb*₂*Se*₃ : *Se* (3, 3') *CdTe* : *Cu* (4, 4').

заключительном этапе процесса. Экспериментальное значение τ^* позволяет с помощью выражения

$$\tau = \lambda \tau' = \frac{M}{N_{\nu}} \exp \frac{\varepsilon_{\pi} - \varepsilon_{\nu}}{\kappa T} \cdot \tau'$$
(3)

определить энергию активации глубо-ких уровней прилипания, ответственных за $\Phi \mathcal{P}C$ в исследуемой пленке.

Из второго линейного участка зависимости $V_{\phi \ni H}(t)$ находим характеристическое время релаксации $\tau = \tau^* = 35 \, \text{мин}$. Если считать, что этот основной участок релаксационный кривой $\Phi \ni H$ связан с захватом дырок на глубокий примесный уровень в n – областях $A\Phi H$ пленки, то принимая для этого уровня $5 \cdot 10^{17} \, cm^{-3}$, $\tau = 10^{-7} \, c$, получим следующее значение её глубины залегания:

$$\varepsilon_{n_2} = \varepsilon_{\nu} + 0.25 \ \Im B \left(40 - 15 \cdot 2.3 + 7.69 \right) = \varepsilon_{\nu} + 0.33 \pm 0.05 \ \Im B, \tag{4}$$

что хорошо совпадает с положением основного примесного уровня Ag в кристаллах CdTe. Это значение энергии активации подтверждается ещё и по

результатам исследований температурной $\tau^*(T)$ (рис. зависимости 4), которой в в температурной области 300-400° К проявляется уровень $0,35 \pm 0,05 \Rightarrow B$, а в пределах температур 200-250 *K*, описываемое зависимостью $\ell n \tau \sim T^{-\frac{1}{4}}$ au^* определяется (предполагается, что электропроводностью неупорядоченном как В полупроводнике (закон Мотта), что наблюдается в сильно компенсированном CdTe [4]) - один мелкий уровень $0,05 \div 0,11 \pm 0,05 \ni B$.

Первый и второй энергетические уровни наблюдаются и по температурным зависимостям $R_{nn}(T), V_{\phi \ni H}(T)$ и $\tau^*(T)$. Уровень с энергией активацией 0,32 эВ в пределах погрешности также наблюдается в спектральных зависимостях

Рис. 4. Температурная зависимость τ^* для $A\Phi H$ пленок CdTe: Ag.

фотоэлектретного напряжения $V_{\phi \ni H}(\lambda)$ и тока короткого замыкания $I_{\kappa,s.}(\lambda)$. Отсюда заключаем, что $\Phi \ni C$ активизированнных $A\Phi H$ пленок CdTe : Ag обусловлено с глубокими примесными уровнями Ag или комплексом, в которой входит Ag.

Экспериментальные релаксационные кривые $V_{\phi \ni H}$ кроме этого позволили определить эффективные значения ёмкости активированных $A\Phi H$ пленок. Ёмкость пленки (C_{nn}) определялась из формулы $\tau^* = R_{nn} (C_{cx} + C_{nn})$, где C_{cx} – схемная емкость (в наших измерениях $C_{cx} \approx 3n\phi$).

Литература

- 1. Адирович Э.И., Мастов Э.М., Мирзамахмудов Т., Найманбоев Р., Рубинов., Шакиров Н., Юабов В.М. В сб.: «Фотоэлектрические явления и оптоэлектроника». Изд. «Фан», Ташкент, 1972. с.143.
- 2. Эргашев Ж., Юлдашев Н.Х. Фотоэлектретный эффект в полупроводниковых пленочных структурах. Монография.. «Техника», Фергана-2017, 180 с.
- Нурматов, О. Р., Абдуллаев, Ш. Ш., & Юлдашев, Н. Х. (2021). Временная релаксация фотоэлектретного состояния в фотовольтаических пленках cdte: ag, cd, cu и sb2se3: se. Central Asian Journal of Theoretical and Applied Science, 2(12), 315-322.
- Юлдашев, Н. Х., Ахмаджонов, М. Ф., Мирзаев, В. Т., & Нурматов, О. Р. У. (2019). Фотоэлектретные пленки CdTe: Ag и Sb2Se3 при собственном и примесном поглощении света shape* MERGEFORMAT. Евразийский Союз Ученых, (3-4 (60)), 72-78.