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Mepe npuOmmkeHus K rpanuie paspena (I'P) ¢ momwioxkoil. D10 mospoiser u3bexarh
KOHIIGHTPAIlMK HanpsbkeHnit Ha I'P (HO He ycTpaHseT mX BooOuie) W Momy4nTh Gonee
OaronpusTHOE pacupesnencHue Je(heKToB CTPYKTYPBI B CHCTEME.
2. MHcnonp3oBaHHe SMHUTAKCHANbHBIX IUIEHOK TBEPAbIX PAcTBOPOB IIOCTOSHHOIO COCTaBa C
HYXHBIMH TTapaMe€TpaMu.
3. O6nyuenue rerepocucTeM
)73 TIEPEYHUCIICHHBIX AKTUBHBIX METO10B Haubolee BaXKHBIMU C TOYKH 3PEHUH IIPAKTUYECKOIO
HCTIOJIB30BAHHS SBJISIETCS OOTyYEHHE TeTEePOCHCTEM.
Takum 06pasoM, TpeOOBaHUS K HIEKHOCTH H A0ITOBEYHOCTH HOIYIPOBOIHUKOBBIX IPHOOPOB
BCe BpeMs IOBBINIAIOTCA, a JaJbHEHLIMH IPOrpecc IMONYNPOBOJHHUKOBOH JIEKTPOHUKH,
OmpeNeNsIoMii B 3HAYMTEIbHOH CTENeHH COBPEMEHHOE COCTOSHHE BCeH (M3MKH U TEeXHUKH
TI0JIYIIPOBO/IHUKOB, CBsA3aH KaK C MOBBILICHUEM KayeCTBa, CpOKa Cle)K6bl, TaK U C YBEJIMYCHUEM HUX
HAJIEKHOCTHU.
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Annotation: This research investigates the dimensional quantization in semiconductor
quantum wells with a complex zone structure, specifically focusing on materials like n-GaP and p-
Te, which possess a distinctive "hump-like structure" within their energy bands. The study aims to
understand the energy spectrum and wave functions of electrons in these unique semiconductor
structures, essential for various optical and photovoltaic applications. Through a theoretical approach,
the research unveils a non-overlapping spectrum of dimensionally quantized electron levels,
determined by the presence of an energy gap between distinct subzones within the conduction band.
The study provides analytical expressions for electron wave functions and energy spectra under
different scenarios, characterized by variations in characteristic wave vectors and semiconductor band
parameters.

Keywords: The confinement of electrons within quantum wells, leading to quantized energy
levels, A nanostructure with discrete energy levels for electrons, crucial in optoelectronic devices.
The intricate energy band configuration within semiconductors, affecting electronic properties. n-
GaP and p-Te: The distribution of energy levels available to electrons within a material. A
mathematical method used to analyze the effects of small changes in a system's parameters.
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Introduction. Recently, optical transitions between levels in a dimensional quantized well (DQW),
which are used in infrared photoconverters [1], have attracted considerable attention. For
semiconductors with a simple zone, the calculation of interlevel transitions for an DQW of an
arbitrary potential was carried out earlier in [2, 3]. At the same time, the interlevel optical transitions
in the DQW of hole conduction are of interest because of the nonzero absorption for light of arbitrary
polarization, which have practical application [4]. A theoretical research of this type of problem is
made difficult by the complexity of the band structure of a semiconductor. In particular, in [5-7] such
aproblem was solved numerically in the case of a rectangular DQW with a fixed thickness. However,
even a small variation of the thickness or depth of the DQW can greatly change the final result, which
makes it difficult to analyze intermediate calculations. In [8], on the basis of the perturbation theory,
analytical expressions were obtained [9]. The energy spectrum of the holes was studied, and the
intersubband absorption of polarized radiation in an infinitely deep semiconductor quantum well was
studied. The calculations were carried out in the Luttinger — Cohn approximation [10, 11] for
semiconductors with a zinc blende lattice.

However, a theoretical research of dimensional quantization in a potential well grown on a
semiconductor base with a complex zone, one subzone of which has a “hump-like structure” (for
example, n-GaP or p-Te) remains open, which was researched in this work.

Note that the research of a number of phenomena, in particular optical or photovoltaic effects in a
dimensionally quantized well, requires knowledge of the energy spectrum and wave functions of
electrons.

Rezults. For a quantum well with potential U(z), we represent the effective Hamiltonian of
electrons in n-GaP as

H=Hy+Rk2, (1)
Where
- _AT1 0] [4 0 & 2 B. Dsingpcos
HU*E[O —1]‘[0 4 |52 +U@), R, = Dsin(/;cosw B, - @

4,,B,,D,P are n-GaP  band parameters, Kk, =k + kf, , k= (kx, ky) (or
k,=k cosp, k, =k sing) is two-dimensional wave vector directed along the interface,
FL:(x,y). Below, we assume that the wave function of electrons in the DQW plane is
W oc exp(ik, 7).
(0)
The unperturbed energy levels E;(0) and the wave function of electrons u/g” :B;}(O)} in the
1

subbands of the conduction band X (¢ =3,1) at n—GaP are determined from the following matrix

differential equation 1:[01/}5,0' = E:l/;gn), where E, = {% g ] Then we have
) 1
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where the third term describes the transformation of an electron with mass ;) to mass my, .
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Next, consider one of the possible cases. In this case, we will assume that the effective masses of the
electrons in both subbands are the same, i.e. 4; = 4, = A. Then the last equation will be

A (0) & Aw® o -y © (0) E (0)
*[lllz(O)}‘ﬁLW?m +P—| H (U |1 = E‘W(}m @
2l-» 0z [ Ay ozl ys i Wi

Then we have a system of equations
Py oy

LA o

1 -
+—[U@)-E lpi” +— =0,
o2 A A[ @ 3]% 127 )
A2 (0)

4

oy, Paq/§°’ 1 =1 0 1A

- +————+—|U(2)-E ——— =0.
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Next, we make the notation of type " +iy(” = ¢ and assume that Ey=E =E=E(k,)-Bk:.

Then we get the equation for ¢ ©

&’ P 1 = 1A
e v @Bl g3 o ©®

1 = 1A
If we assume that U(z) = U, = const and make the following notation x5 = 7(Uﬂ —E), K=—=,
’ 4 42

P
2= 7 then we will have

a B N
. —Ki¢_+Kag =0, @)

Solution (7) {_ =C-exp(az) is simplified if we assume that {_(z) function is a real quantity, the

characteristic equation for which has roots
a, =iyt —}(2+4(K/2{—K§C—') 8)
- C
To simplify the solution of the problem, we assume that C=C", C— is a real quantity. Then
a, =iyt *lz+4(l('{2{*l(§) )
and we have that
¢ (2)= exp(i;(z){C+ «exp(z, -7 +4(K§ *K‘i))‘i’CL »exp(—zq 7 +4(K§ —Kﬁ))} (10)
If x7(x; . Than

' :exp(i;(z)[C, -cos(z,';(2 +4(K§ —K}))-H'Cz sin(z ,;{2+4(1(§ - %))] (11

Considering the boundary conditions of type {,(z=-a/2)=0, {,(z=+a/2)=0, if condition
cos(a/2y)+isin(a/2y)#0 is satisfied, then the relationship between C, and C, is defined as

C = iriCltg(a /2, ’;{Z +4(K§ —K})). In this case, from the normalization condition
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lcl= slel= ; (12)

a2 22
sm[g X +4(KA—KA)]
and the expression for {_(z) is

£ (2)=expliz)x
%[Sm[(ﬂgj ZZH(Kg_K%)j_Si“((Z_% lz+4('(§_'(3)]]+ GE)
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whence the electron wave functions are determined by the ratios
Y, = %{[cos(;(z)fsin(;(z)]»sin[[z +%j ra +4(K‘i 7/(3 )]7

7[cos(;(z) +sin(;(z)]»sin[[z 7%) 7 +4(K‘§ *K‘i)]},

o 4740

X

(14)

¥, :—%{[cos(lz)+sin(lz)]-sin[[z+gj Ve +4(K§ —K/Z()]-f-

+[cos(;(z)—sin(;(z)] . sin[(z —%]m)}

At y/g“)(z:ta/Z):O,wl“))(z:ta/Z):O, we obtain expressions for the energies of the

(15)

dimensionally-quantized states of electrons at the point X of the Brillouin zone, i.e. with y
2 2n+1)° 2
E:Uoféfp—ﬁmzuaz,E:Uoféfif,mznza:, (16)
2 164 4 2 164

where the first ratio corresponds to even to the inversion of the coordinates of states, and the second
to odd states, an integer.

Note that in the case when 4(1(}; —Ki)—;/)O, then the wave function can be represented as

v (z) :exp(—zl){é‘, cos(z\/4(;cj —Kﬁ)—lz )+C"3 sin(z\/ét-(nrj —Ki)—lz ” (17)
Then, from the normalization condition of the wave function, it is easy to obtain expressions for
C',,Q in the form
C{z :#x{“ﬁ —Ki)-#;(z-cos(a« 4()(/2[ —Ki)—){z )+
2] 22 +a(d -x2)- 2] (18)
+l»\/4(l('{2{ 7K§)—;(2 4sin(a\/4(lrj 7K§)7;(2 )}
- sh(ay) 2.2 2 ' 2_ 2 2
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Conclusions. Thus, it was shown that the dimensionally-quantized spectrum of electrons in a
semiconductor, the conduction band of which consists of two subzones, between which there is an
energy gap, consists of a set of dimensionally quantized levels that do not intersect each other due to
the presence of an energy gap. Expressions are obtained for the wave functions and energy spectra of
electrons for different cases, differing from each other by relations for the characteristic wave vectors,
which, in turn, depend on the band parameters of the semiconductor and on the energy gap between
the subbands of the conduction band.
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Cunre3 YAG:Ce key IEKTP it pa
Kynycbekos A.M.!, Jiucurpsn B.M.2, Kapun6aes XK. T.!, Kusrunaunos K.C.!, Crpenkosa A.B.!
'"Espasuiickuii Haunonanbublii ynusepenter nm. JLH.Tymunesa, Acrana Kasaxcran;
*HaunoHaIbHOTO HCCIEI0BATENBCKOro TOMCKOT0 MONMTEXHHUECKOro yHHBepeuTeTa Poccus,

AnHoOTAauMs: B paGoTe npescTaBieHbl pe3ybTaThl HCCIEIOBAHUS CTPYKTYPbI U JIOMHHECIIEHTHBIX
cBolicTB kepamuuecknx o6pasuos YAG:Ce (Y3AlsO12, neruposannbix nonamu Ce®’). Cunres
OCYIIECTBIIANCS ITYTEM CIIEKAHWs OOpaslloB M3 HCXOIHBIX OKCHIHBIX IOPOIIKOB O] MOIIHBIM
BO3/ICHCTBUEM IydKa BBICOKOIHEPTETUYECKHX 3JIEKTPOHOB ¢ sHeprueii 1,4 MsB u muoTHocThIO
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