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Annotation: This research investigates the dimensional quantization in semiconductor 

quantum wells with a complex zone structure, specifically focusing on materials like n-GaP and p-
Te, which possess a distinctive "hump-like structure" within their energy bands. The study aims to 
understand the energy spectrum and wave functions of electrons in these unique semiconductor 
structures, essential for various optical and photovoltaic applications. Through a theoretical approach, 
the research unveils a non-overlapping spectrum of dimensionally quantized electron levels, 
determined by the presence of an energy gap between distinct subzones within the conduction band. 
The study provides analytical expressions for electron wave functions and energy spectra under 
different scenarios, characterized by variations in characteristic wave vectors and semiconductor band 
parameters. 

  Keywords: The confinement of electrons within quantum wells, leading to quantized energy 
levels, A nanostructure with discrete energy levels for electrons, crucial in optoelectronic devices. 
The intricate energy band configuration within semiconductors, affecting electronic properties. n-
GaP and p-Te: The distribution of energy levels available to electrons within a material. A 
mathematical method used to analyze the effects of small changes in a system's parameters. 

To the of dimensional quantization in a semiconductor with a complex zone  

Introduction. Recently, optical transitions between levels in a dimensional quantized well (DQW), 
which are used in infrared photoconverters [1], have attracted considerable attention. For 
semiconductors with a simple zone, the calculation of interlevel transitions for an DQW of an 
arbitrary potential was carried out earlier in [2, 3]. At the same time, the interlevel optical transitions 
in the DQW of hole conduction are of interest because of the nonzero absorption for light of arbitrary 
polarization, which have practical application [4]. A theoretical research of this type of problem is 
made difficult by the complexity of the band structure of a semiconductor. In particular, in [5 7] such 
a problem was solved numerically in the case of a rectangular DQW with a fixed thickness. However, 
even a small variation of the thickness or depth of the DQW can greatly change the final result, which 
makes it difficult to analyze intermediate calculations. In [8], on the basis of the perturbation theory, 
analytical expressions were obtained [9]. The energy spectrum of the holes was studied, and the 
intersubband absorption of polarized radiation in an infinitely deep semiconductor quantum well was 
studied. The calculations were carried out in the Luttinger  Cohn approximation [10, 11] for 
semiconductors with a zinc blende lattice. 

However, a theoretical research of dimensional quantization in a potential well grown on a 
-

example, n-GaP or p-Te) remains open, which was researched in this work. 
Note that the research of a number of phenomena, in particular optical or photovoltaic effects in a 
dimensionally quantized well, requires knowledge of the energy spectrum and wave functions of 
electrons. 

Rezults. For a quantum well with potential ( )U z , we represent the effective Hamiltonian of 

electrons in n-GaP as 
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3,1 3,1, , ,A B D P  are n-GaP band parameters, 2 2 2 ,x yk k k  ,x yk k k  (or 

cos , sinx yk k k k ) is two-dimensional wave vector directed along the interface, 

( , ).r x y  Below, we assume that the wave function of electrons in the DQW plane is 

exp( )ik r  . 
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subbands of the conduction band ( 3,1)X  at n GaP  are determined from the following matrix 
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where the third term describes the transformation of an electron with mass 1(3)m  to mass 3(1)m . 



Next, consider one of the possible cases. In this case, we will assume that the effective masses of the 

electrons in both subbands are the same, i.e. 3 1 .A A A  Then the last equation will be 
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Then we have a system of equations 
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Next, we make the notation of type 0(0) (0)
3 1i  and assume that 2

3 1 ( ) BE E E E k k . 

Then we get the equation for 0  
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If we assume that 0( )U z U const  and make the following notation 2
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Solution (7) exp( )C z  is simplified if we assume that ( )z  function is a real quantity, the 

characteristic equation for which has roots 
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To simplify the solution of the problem, we assume that C C , C  is a real quantity. Then 
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and we have that 
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Considering the boundary conditions of type ( / 2) 0z a , ( / 2) 0z a , if condition 

cos / 2 sin / 2 0a i a  is satisfied, then the relationship between 1C  and 2C  is defined as 
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whence the electron wave functions are determined by the ratios 
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At (0) (0)
3 1( / 2) 0, ( / 2) 0z a z a , we obtain expressions for the energies of the 

dimensionally-quantized states of electrons at the point X of the Brillouin zone, i.e. with y 
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where the first ratio corresponds to even to the inversion of the coordinates of states, and the second 
to odd states, an integer. 

Note that in the case when 2 2 24 0Å , then the wave function can be represented as 
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Then, from the normalization condition of the wave function, it is easy to obtain expressions for 

1 3,C C  in the form 
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Conclusions. Thus, it was shown that the dimensionally-quantized spectrum of electrons in a 
semiconductor, the conduction band of which consists of two subzones, between which there is an 
energy gap, consists of a set of dimensionally quantized levels that do not intersect each other due to 
the presence of an energy gap. Expressions are obtained for the wave functions and energy spectra of 
electrons for different cases, differing from each other by relations for the characteristic wave vectors, 
which, in turn, depend on the band parameters of the semiconductor and on the energy gap between 
the subbands of the conduction band. 
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