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Some potentials such as the Morse potential[1,2] and embedded-atom method (EAM)[3] were
developed and proposed to describe the potential energy function between atoms in molecules and
crystals, and in particular in metals. The Morse potential,

o(r) =D, [e*ZE(V’re) — zefa(r*u)]’

is a three-parameter empirical potential that attempts to include the description of the phenomenon
of the dissociation beyond a certain energy value D, and the asymmetry of the interaction. Despite
their orthogonality, the Morse wave functions do not form a non-complete set of functions, due to the
fact that the number of wave functions (and energy levels) is finite; as said, beyond a certain energy
level, the dissociation of the system occurs and the states are no longer bonded. However, this
potential acquired a historical importance, since it represents the first case of analytical solution of
the time-independent Schrodinger equation with a finite number of eigenstates. They have been
successfully applied in a number of cases to estimate properties of metals at room temperature in
many articles.[4] In particular, anharmonic interatomic potentials including Morse potential
parameters have been intensively studied since the late 1950s.[2,4,5] They are used for the calculation
and analysis of the thermodynamic parameters, especially, the anharmonic effects contained in XAFS
(X-ray Absorption Fine Structure),[5] which influence on the physical information taken from these
spectra. The anharmonicity is also included in refined calculations of vibrational (IR and Raman) and
vibronically resolved electronic spectra. Nonetheless, these types of calculations are so expensive and
time-consuming from a computational point of view to be inapplicable to middle-large size molecular
systems.

Concerning the description and prediction of thermal and mechanical behaviour of solids, some
difficulties arise when temperature condition deviates from room temperature. It is well-known that
temperature causes the phenomenon of thermal expansion, which is a temperature-dependent
behaviour derived by the anharmonicity of the interatomic potential. In other words, if we assume
that interactions between particle of a crystal are described by the harmonic potential deriving from
the classical Hooke law,

() = 2k(r—1)?,

the thermal expansion of the solid could not be described, since (r) = 7,, being the potential even.
Moreover, other material characteristics of solids, such as elastic constant and heat capacity, also vary
with temperature due to the nature of anharmonic vibrations. Furthermore, molecular or atomic
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bonding strengths are presented after taking the differentiation of the potential function. Bonding

strengths are the key factors of the mechanical properties of bulk materials.

This study is focused on two main aspects. Firstly, some fundamental developments related with the

evaluation of matrix elements between Morse wave functions are presented. Since the analytical

expressions are derived, this approach is fast to evaluate and does not require great computational
efforts. Furthermore, thanks to these formulae, we were able to show some key aspect of the
behaviour of systems when populate their zeroth vibrational level. Numerical example are shown and
discussed. In the second part of this work, an application of the previous theoretical development is
shown. This consists of a simple atomic-level model for the estimation of temperature-dependent
thermal expansion coefficients of bulk metals. The latter is applied to a series of metals. This model
provides an efficient and rapid way for evaluating material characteristics once the parameters of the

Morse potential function and temperature are known. A temperature-dependent modified Morse

potential is finally developed and validated.
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BJIMSTHUE IEJJOYHO3EMEJIBHBIX METAJIVIOB HA TEIJIOEMKOCTH M
MU3MEHEHUE TEPMOJWHAMMYECKHX ®YHKIUA CIIJIABA AKIM2 HA OCHOBE
OCOBOYHUCTOI'O ATIOMUHUSA
C.3. OTakoHOB
«XymKaHAcKuii rocyrapcrsennbiii yausepeuter um. b. 'agyposay, r. Xymxana,
TapxuKncTan

AHHOTALUS: U3BECTHO, YTO OCOOOYHCTHH AIIOMHHMII C MHHHMAJBHBIM COJEPKAHHEM
npuMeceil MHUPOKO HCMONBb3YeTCs B DJICKTPOHHON TEXHHKE U M3TOTOBIEHUS TOKOIPOBOISALIUX
JIOPO’KEK MHTErpajbHBIX MHKpocxeM. Otcroga pa3paboTKa HOBBIX COCTaBOB CIUIABOB HAa OCHOBE
TAKOro merajuia siBJIsICTCA BE€CbMa ax'ryanbﬂoﬁ 3ana'-leﬁ. O,ElHl/lM U3 IEPCIEKTUBHLIX CIUIABOB Ha
ocHOBe Takoro Merasuia seisiercst cruas AKIM2 (Al+1%Si+2%Cu). Janublif cruia Obl1 IPUHATH
HaMH B Ka4€CTBE MOJCIbHOIO CIUIaBa U MOABEpraics Mouudmunposaumo 1IEIT0YHO3EME/IbHBIMU
MeTaUIaMH.

TemIoéMKOCTb SBISCTCS BaKHCUIICH XapaKTCPUCTHKOI BEIIECTB U MO €€ M3MEHCHHIO OT
TEMIIEPaTypbl MOXXHO OHPEAeInTh THI (Ha30BOro mpeBpalleHus, temieparypy [lebas, sHepruio
o0pa3oBaHHs BaKaHCHI, KOO(Q(HULUHUEHT IEKTPOHHOI TEILIOEMKOCTH H Jp. CBoicTBa. B HacTosei
pabote TeruoémkocTs crutaBa AK1IM2 ¢ mienouHo3eMeIbHBIMU METaJIAMH OIPEJIETIUIOCh B PEKUME
«OXJIAXKACHHSD 110 H3BECTHOM TEMIOEMKOCTU ITAIOHHOr0 obpasua u3 meau. [l yero o6paboTkoit
KPUBBIX CKOPOCTH OXJIaXkKIeHHs 00pa3ioB u3 ciuaBa AKIM?2 ¢ mienouHo3eMebHbIMI METa/IaMU U
JTAJIOHA MOJIYYEHBbI TOJIUHOMbBI OINHUCBHIBAIOIIUE HX CKOPOCTH  OXJIakKIACHUS. IIa.rJee, 1o
OKCIIEPUMEHTAIIbHO HaﬁﬂeHHblM BEJIMYUHAM CKOpOCTeﬁ OXJIQXKICHUs HSTajloHA W OGpazu()B u3
CIJIaBOB, 3Hasg MX MaccChl, ObLn YCTaHOBJICHBI  [TOJIMHOMbBI TeMnepaTypHOﬁ 3aBUCUMOCTH
TEMIOEMKOCTH CIUIABOB M JTAJIOHA, KOTOPBLIC OINUCHIBAIOTCS ‘ieTblpéX'-U'leHHblM YpaBHEHHUEM.
Hcnonb3ysi, HHTErpaibl OT YACILHON TEIUIOEMKOCTH ObLIN yCTAHOBJIEHBI MOJEIN TEMIECPATYPHOI
3aBUCHMOCTH M3MEHEHHE YHTAJIbIIHH, SHTPOIUHU 1 dHepruu I'nboea.




